Review: evolution of GnIH and related peptides structure and function in the chordates

نویسندگان

  • Tomohiro Osugi
  • Takayoshi Ubuka
  • Kazuyoshi Tsutsui
چکیده

Discovery of gonadotropin-inhibitory hormone (GnIH) in the Japanese quail in 2000 was the first to demonstrate the existence of a hypothalamic neuropeptide inhibiting gonadotropin release. We now know that GnIH regulates reproduction by inhibiting gonadotropin synthesis and release via action on the gonadotropin-releasing hormone (GnRH) system and the gonadotrope in various vertebrates. GnIH peptides identified in birds and mammals have a common LPXRF-amide (X = L or Q) motif at the C-terminus and inhibit pituitary gonadotropin secretion. However, the function and structure of GnIH peptides are diverse in fish. Goldfish GnIHs possessing a C-terminal LPXRF-amide motif have both stimulatory and inhibitory effects on gonadotropin synthesis or release. The C-terminal sequence of grass puffer and medaka GnIHs are MPQRF-amide. To investigate the evolutionary origin of GnIH and its ancestral structure and function, we searched for GnIH in agnathans, the most ancient lineage of vertebrates. We identified GnIH precursor gene and mature GnIH peptides with C-terminal QPQRF-amide or RPQRF-amide from the brain of sea lamprey. Lamprey GnIH fibers were in close proximity to GnRH-III neurons. Further, one of lamprey GnIHs stimulated the expression of lamprey GnRH-III peptide in the hypothalamus and gonadotropic hormone β mRNA expression in the pituitary. We further identified the ancestral form of GnIH, which had a C-terminal RPQRF-amide, and its receptors in amphioxus, the most basal chordate species. The amphioxus GnIH inhibited cAMP signaling in vitro. In sum, the original forms of GnIH may date back to the time of the emergence of early chordates. GnIH peptides may have had various C-terminal structures slightly different from LPXRF-amide in basal chordates, which had stimulatory and/or inhibitory functions on reproduction. The C-terminal LPXRF-amide structure and its inhibitory function on reproduction may be selected in later-evolved vertebrates, such as birds and mammals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Arginine-Phenylalanine-Amide-Related Peptides in Mammalian Reproduction

Until 2000 it was believed that gonadotropin-releasing hormone (GnRH) was the sole regulator of hypophyseal gonadotropes. In 2000, the discovery of a gonadotropin inhibitory hormone (GnIH) initiated a revolution in the field of reproductive physiology. Identification of GnIH homologues in mammals, the arginine-phenylalanine- amide (RFamide)-related peptides (RFRPs), indicated a similar function...

متن کامل

Evolutionary Origin of GnIH and NPFF in Chordates: Insights from Novel Amphioxus RFamide Peptides

Gonadotropin-inhibitory hormone (GnIH) is a newly identified hypothalamic neuropeptide that inhibits pituitary hormone secretion in vertebrates. GnIH has an LPXRFamide (X = L or Q) motif at the C-terminal in representative species of gnathostomes. On the other hand, neuropeptide FF (NPFF), a neuropeptide characterized as a pain-modulatory neuropeptide, in vertebrates has a PQRFamide motif simil...

متن کامل

Coexpression of gonadotropin inhibitory hormone with Agouti-related peptide in the neurons of arcuate nucleus of ewe hypothalamus

Introduction: Gonadotropin inhibitory hormone (GnIH) and Agouti-related peptide (AgRP) are orexigenic peptides expressed in the arcuate nucleus (Arc) of the hypothalamus in the ewe. In addition, effects of GnIH and AgRP on the regulation of gonadotropin releasing hormone secretion have been shown in some mammals. The objective of the present study was to investigate the coexpression of GnIH ...

متن کامل

The roles of RFamide-related peptides (RFRPs), mammalian gonadotropin-inhibitory hormone (GnIH) orthologues in female reproduction

Objective(s): To benefit from reproduction and deal with challenges in the environmental conditions, animals must adapt internal physiology to maximize the reproduction rate. Maladaptive variations in the neurochemical systems and reproductive system can lead to manifestation of several significant mammalian reprocesses, including mammalian ovarian lifespan. RFamide-related peptide (RFRP, Rfrp)...

متن کامل

The control of reproductive physiology and behavior by gonadotropin-inhibitory hormone

Gonadotropin-releasing hormone (GnRH) controls the reproductive physiology and behavior of vertebrates by stimulating synthesis and release of gonadotropin from the pituitary gland. In 2000, another hypothalamic neuropeptide, gonadotropin-inhibitory hormone (GnIH), was discovered in quail and found to be an inhibiting factor for gonadotropin release. GnIH homologs are present in the brains of v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014